Let $d \in R$, and $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta \in \left[ {0,2\pi } \right]$. If the minimum value of det $(A)$ is $8$, then a value of $d$ is
$-5$
$-7$
$2\left( {\sqrt 2 + 1} \right)$
$2\left( {\sqrt 2 + 2} \right)$
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
An ordered pair $(\alpha , \beta )$ for which the system of linear equations
$\left( {1 + \alpha } \right)x + \beta y + z = 2$ ; $\alpha x + \left( {1 + \beta } \right)y + z = 3$ ; $\alpha x + \beta y + 2z = 2$ has a unique solution, is
If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is
If $n \ne 3k$ and 1, $\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ has the value
The number of positive integral solutions $\left| {\,\,\begin{array}{*{20}{c}}{1 - \lambda }&2&1\\{ - 3}&\lambda &{ - 2}\\2&{ - 2}&{1 + \lambda }\end{array}\,\,} \right|$ $= 0$ is